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Considerable attention has recently been given to the dissociation of hydrates in porous media [1-8]. 
This paper is devoted to some aspects of the depression-induced dissociation of hydrates completely filling 
a porous volume in the initial state. Criteria are proposed for parameters of the system where a hydrate is 
dissociable in the volume zone. 

1. F u n d a m e n t a l  A s s u m p t i o n .  Let us consider hydrodynamic and thermophysical processes that 
occur in porous media during dissociation of hydrates. The system of equations describing these processes has 
the most general form for a three-phkse region [4], where a solid hydrate and the products of its dissociation 
[liquid (water) and gas] are present. For the subsequent consideration we assume that: 1) the gas, liquid, solid 
hydrate, and porous medium have the same temperature at each point, 2) in addition, the porous medium 
skeleton, the hydrate, and water are incompressible, 3) the porosity is constant, and the gas is calorifically 
perfect: 

o o o O R T ,  (1.1) Ps,Ph,Pl ,  m = const, p =  pg 

where p0 (i = s, h, g, l) is the true density, p is the pressure, T is the temperature,  R is the gas constant, 
and m is the porosity. Hereafter the subscripts s, h,g ,  and l mean that  a given parameter belongs to the 
porous medium skeleton, hydrate, gas, and water, respectively. The porous medium skeleton and the hydrate 
are immovable (Vs = Vh = 0). The presence of liquid vapors in the gas phase and the gas solubility in the 
liquid as well as diffusion in the hydrate are neglected. The hydrate is a two-component system having mass 
concentration of gLs g (mass concentration of the liquid 1 - g). We will neglect diffusion in the hydrate. 

2. F u n d a m e n t a l  E q u a t i o n s .  Taking into account the above assumptions, we write the mass 
conservation equations for gas and water as follows: 

0 
0---~ [m((1 -- u)p~ + upXg)] + V .  [m(1 - u)p~ -- 0; (2.1) 

[m(( i  - v )p~  + - g ) ) ]  + v .  [m(1 - v)p~ = o, (2.2) 

sg+sl=i, 
where v is the hydrate saturation, m(1 - v) is the "quick" mobile porosity, i.e., a portion of the porous medium 
volume filled with mobile phases - -  liquid and gas, Sg and St are the gas and water saturation, respectively, 
vi (i = gO is the velocity of the phases. 

For the gas and liquid filtration we use the Darcy law: 

m(1 - u)Siv i  = kKi  V p  (i = g, 1), (2.3) 

where k, Ki  are the coefficients of absolute permeability and relative phase permeability, respectively, and 
gi (i = g, l) is the dynamic viscosity. The heat supply equation for the system under consideration, with the 
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above assumptions, can be written as follows: 

OT 
pc - ~  + m ( 1 -  u)(p~ Sgcovg + p~ Stctvt) . V T  = V . ( ;~VT) + m ( 1 -  u)Sg(  Op\-~ + v  a �9 V p  / + m po l OUot ' (2.4) 

pc = (1 - r~)p~ + r~(vp% + (1 - v)(p~ + p~ 

where ci (i = s, h, g, l) is the specific heat (with c o being the specific heat of the gas at constant pressure), )~ 
is the thermal conductivity coefficient, and 1 is the specific heat of the hydrate dissociation. 

In the dissociation region, where the gas, liquid, and hydrate are present, the temperature and pressure 
on the saturation line satisfy the condition 

T = T.  In(p/p,) ,  (2.5) 

where T, and P,  are empirical parameters. 
We assume that  the mass concentration of the gas in the hydrate does not depend on the temperature 

and pressure (g = const). 
The "quick" mobile porosity in the processes under consideration is variable due to the hydrate 

dissociation. Therefore, the absolute permeability depends on the hydrate saturation. This dependence can 
be obtained on the basis of the Kozeny formula 

r n  t3 

k = ko (1 - m') 2' m'  = m(1 - u). (2.6) 

In general, relative phase permeability coefficients do not universally depend on phase saturation 
and other physical parameters that  describe the flow of a gas-liquid mixture in capillaries. Under certain 
hypotheses for each particular case, these coefficients may be determined. In particular, in the limiting case 
where the liquid produced during hydrate dissociation completely remains in the porous medium, the phase 
permeability for the liquid is Kt = O, and the permeability coefficient for the gas phase cart be determined as 
in (2.6): 

mtt 3 
k 9 = k K  9 = ko (1 - m") 2' rn" = m(1 - v)S e. (2.7) 

It is significant that  this scheme, as demonstrated below, is equivalent to the assumption that gas is 
the only product  of hydrate dissociation with normalized density and other thermophysical parameters. In 
addition, it is possible to determine the relative phase permeability coefficient accepting the "gas bearing" 
scheme which assumes that  the related gas phase flows primarily along the pore walls. According to this 
assumption, the relative phase permeability coefficient takes the form [9] 

K e = S~, g t  = (1 - Se)[Z + ( 2 -  -a)Se]/-~, Z = # , / / t t .  

If the equilibrium scheme of filtration flow is accepted, which means that  the gas and the liquid move 
at the same velocity, then the relative phase permeability coefficient can be written as 

Kg =/t,s, / / tea, Kz = mSd / t r  

where/tel is the normalized viscosity for the gas-liquid mixture in equilibrium. 

3. I m m o v a b l e  L i q u i d  (Kl = 0). According to the first scheme of filtration flow, from Eqs. (2.1)-(2.4) 
we have for a one-dimensional case: 

0 
0--~. [m( (1  - v)p~SI + upS(1 - g ) ) ]  = O; (3.1) 

0 o [, ,(1 - ~)sep~~ = o; (3.2) o--/[r,((t - ")P~Se + vAg)] + 

OT OT 0 ~ OT Op Ou 
Pc - ~  + rn (1 -  v ) P~ S' co v' -~x = -~x ( -~= ) + m (1 -  u ) Se ( -~ + vg ~xx ) + m p ~ l "~" " (3.3) 
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If we assume that the porous medium is initially completely filled with a hydrate (u = 1), it can be 
concluded from Eq. (3.1) that 

(1 - t,)p?Sl + up~ - g) = pX(I - g), 

which gives 

,,~,(I - g), po _ p~,(1 - g) 
St (3.4) 

0 0 It follows from these equations that under the above assumptions for Ph, P~, and g, the water saturation (as 
well as gas saturation) remains constant in the dissociation region. Since the water saturation value must be 
less than unity, the liquid and hydrate density must satisfy the following inequality in order for the accepted 
scheme to be meaningful: 

p? > p~,(1- g). 

This condition for the systems under consideration is usually satisfied. Using Eq. (3.4), we can reduce 
Eq. (3.1) to the form 

S o S (p~ -~x)' (3.5) 
~-~ [(pg - ~~ - t/)] = ~z  ~rn#g 

where ~ = gp~ kg = kJS~. It follows from Eq. (3.5) that, based on the accepted simplifications, the 
problem becomes equivalent to the case where gas is the only product of hydrate dissociation, with hydrate 
density ~o and porous medium saturation kg. 

To clear up the principal features of the process at actual values of the thermophysical parameters of 
the system under consideration, we may neglect, in most cases, terms related to the barothermic effect in 
(3.3) (the second term on the right-hand side) and terms related to the convective transfer of heat caused by 
gas filtration. Taking into account that for the parameters of gas-liquid systems the relation p0 << ff~ usually 
holds, we write Eqs. (3.3) and (3.4) as follows: 

a~ = a f ~P~ ap (3.~) 
~ 7  ~ , m - ~  ~); 

aT a A aT 0-au  pc ~ = ~ ( ~ )  + mphl ~ .  (3.7) 

Eliminating au/St from these equations, we obtain 

ST = S ['kgp~176 Sp + A ST 
(3 .8)  

In the region where a gas, a liquid, and a hydrate are present, the pressure uniquely determines the 
current temperature according to relation (2.5), hence 

Sp =t{ ST dp sS ~ '  #=--at" (3.9) 

Now Eq. (3.8) takes the form 

- 0 0 t ] sT = s [ fk ,  pp~Ip ~ ~r  
(3.10) 

It follows from Eq. (3.10) that when temperature (or pressure) fields propagate in a porous medium 
which is filled with a. hydrate and products of its dissociation, the thermal conductivity is negligible at 
sufficiently high values of the permeability coefficient defined by the condition 

�9 �9 ~, -, #g~OAT, T '  dT 
kg>>k~, k~=k~S~, kg= ~op--~,~ , = dp.. (3.11) 
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In view of (2.5), we may rewrite the expression for the normalized critical permeability as 

k; - pO pOhp l = Zeg \-~h,i \ pl / zeg=7'pg 

where Zeg is the kinematic gas viscosity. In particular, for a porous medium filled with a hydrate, having 
g = 0.1, p0 = 900 kg/m 3, T. = 10 K, l = 5 .10 s J/kg, p = 10 MPa, I = 2 kg.m/(sec3.K), #g = 2- 10 .5 Pa.sec, 
we obtain kg = 10 - i s  m 2. 

Consequently, the influence of thermal conductivity must be taken into account only at very small 
values of the gas permeability coefficient kg. At low values (kg << k~), the terms of Eq. (3.6) related to piezo 
conductivity may be neglected. However, it should be noted that Eqs. (3.6) and (3.7) in this case have only 
the trivial solution v = 1 for hydrate saturation. This means that at low permeability there cannot exist 
volume regions containing a hydrate and products of its dissociation simultaneously. 

In other words, the pressure gradients uniquely determined by the temperature field according to Eq. 
(2.5) are not sufficient to transfer gas that is released during the hydrate dissociation. In particular, when the 
absolute permeability [denned by (2.7) at v = 01 

k = kom3S3/(1 -- mSg) 2 

satisfies the condition k << kS, the volume regions where the hydrate dissociation takes place are completely 
absent. Hydrate dissociation will occur on the phase transition surface. 

Below we consider the cases where it is possible to neglect thermal conductivity (A = 0) and to consider 
the thermal capacity constant in a unit volume of the system (pc =const ) .  

Let us assume that a porous medium in the initial state is completely filled with a hydrate (v = 1) 
at temperature To (dissociation pressure at this temperature p0 = p, exp (To~T,)). We consider a self-similar 
regime of gas filtration which is characterized by a sudden drop of pressure on the porous medium boundary 
to the value determined by the condition pe < po. Under this assumption, the initial and boundary conditions 
take the form 

p = p 0 ,  v = l  ( t = 0 ,  x / > 0 ) , p = p e  ( t > 0 ,  x = 0 ) .  (3.12) 

From Eqs. (3.6) and (3.7), in view of (1.1), (2.5), and (2.7), we obtain 

Op A h T  O [ kom2S~p~ (l_v)a 0p] 
at - T'(p) ax [ / ~ - ~ h h ( - l : - ~  2 ~xx ' (3.13) 

where 

1 - v = (To - T (p ) ) /AhT;  T(p) = T,  In (p/p,); T'(p) = T, /p;  

pO(p) = p /aT(p) ;  m" = m(1 - v)Sg; A h T  = mp~ 

AhT is the temperature change of the system, provided that the amount of heat supplied to the system is 
equal to the heat produced by dissociation of the total hydrate present in the porous medium. 

Hence, for the piezoconductivity i n n  porous medium filled with a hydrate and products of its 
dissociation we have one nonlinear parabolic equation. To determine the features of the processes described 
by Eq. (3.9), let us consider the case where the pressure pe on the porous medium boundary differs little from 
Po (Po - P c  << Po). After partial linearization of Eq. (3.13), in particular, assuming that pO and T' are constant 
and that 

pO ,.~ pOg ~ = pou(po), T'(p) ,.o T'(po) = T, /po,  

we have  

(3.14) 
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Fig. 1 

It follows from (2.5) that  

ee(I )= ko po ( p )2 zcT.\2 2 s;. (3.15) 

In deriving (3.14), we considered that  m" << 1. Entering the dimensionless normalized parameter for 
pressure 

p =  p o - p  = 1 - P  
Po - Pe  1---"-S-~e ' P = P/Po 

into Eq. (3.14), we obtain 

(3.16) 
o-5 0~ ,  ~-;~]' = k  F0 ] p 

With these substitutions the initial and boundary conditions (3.12) become 

P=O (t=O, ae>~O), P = I  (t>O,x=O). (3.17) 

In terms of the self-similar variables ~= x / ~ $ ) t ,  Eq. (3.16) and condition (3.17) take the form 

2 d~ = 7'3 , P ( o o ) = O ,  ~(0)=1. (3.18) 

A solution to Eq. (3.18) satisfying the given boundary conditions is illustrated in Fig. 1. Note that  the 
solution curve intersects the abscissa axis at the point ~0 = 0.91 with a vertical tangent line. Hence, it may 
be concluded that  the region where the hydrate dissociation occurs is finite. We write an equation for the 
movement of the right boundary of this region in the form 

For a porous medium completely filled with a hydrate in the initial state, with m = 0.1, ps ~ = 2.6 �9 
103 k g / m  3, p7 = 103 kg /m 3, Cs = 103 J/(kg.K),  p0 = 10 MPa, p0 - p e  = 1 MPa, k0 = 10 -9 m 2, Sg = 0.21, we 

obtain M~I) = 8 .10  -s  m2/sec. 
It can easily be shown that  near the boundary of the hydrate dissociation region the pressure curve is 

defined by the following asymptotic expression: 

When making specific estimations, in particular, determining the rate of a gas flow through the porous 
medium boundary, it should be taken into account that  an important feature of the curve in Fig. 1 is its slope, 
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which is determined by the value of the derivative dP/d~ at ~ = 0. For this case it can be estimated as 

The asymptotic expression for the pressure distribution in the vicinity of the porous medium boundary 
can be written as 

P = ( 1  + 4 P" ~) 1/4. 

For the rate of a three-dimensional gas flow through a porous medium boundary which is defined by 
the expression 

we can write 

Qe = - m ( 1  - ve)Sgvge = 

In general, introducing the dimensionless parameters 

kg~ Op -(o-;).=o, /~g 

Yo J 

P P/po, O T/To, 7~g o o = = = Pg/PgO 

and self-similar variable ~ = x / ~ / ) t  to Sq. (3.13), we can rewrite it in the form 

dR AhO d [T~g(1 _~,)3 dR] 
2 -~- - x O'(P) d~ t O--  m") --i ~ .  ' 

7~g = RIO(P), 1 - v = (1 - O(P))/AhO , O(P) = O, In(P/P,), O'(P) = O,/P, 

T, 
m "  = (1 - u)rnSg, A b e  = A h T / T o ,  8 ,  = ~o '  P* = p , /po ,  X. = ( ~ , e / e ' ( 1 ) )  ~ = ( , % e / e , )  2. 

The initial and boundary conditions for this equation are as follows: 

P(eo)  = 1, P(0) = Re < 1. 

Figures 2 and 3 show a typical pressure and hydro-saturation distribution for various values of the 
pressure difference Ap = Po -- Pe. The following values have been accepted for parameters governing the 
physical properties of the hydrate-porous medium system: m = 0.1, p0 = 2.6.103 kg /m 3, p0 = 103 kg/m 3, 
p~ = 900 kg /m 3, c, = 103 J/(kg-K),  ct = 4.2.103 J/(kg.K), T, = 10 K, ch = 2.5-103 J/(kg.K),  l = 5.10 s J/kg, 

To = 293 K, p, = 2.6 �9 10 -6 Pa, p0 = 13.8 MPa. 
Curves 1-5 (Figs. 2 and 3) correspond to the pressure on the porous medium boundary (pc = 

11.5,9.3,7.1,4.7,2.5 MPa); curve 5 refers to the complete hydrate dissociation on the boundary, and the 
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dashed lines refer to the solution of the simplified Eq. (3.16). It follows from Figs. 2 and 3 that the region 
of hydrate dissociation is limited in size. Also, it is evident that  the curves corresponding to the simplified 
equation (from the viewpoint of obtaining basic relationships for the region of hydrate dissociation and making 
quantitative estimates) agree well with the solution in the case of a more general statement of the problem. 
Since for the solutions presented here the hydrate saturation is always greater than zero (0 <~ v ~< 1), a ' 
condition for the pressure on the porous region boundary (for which the solution is meaningful) can be 
obtained on the basis of expression (3.13) for u. This condition takes the form 

[ AhT~ 
p0exp~, ~** ] ~<p~<P0. 

It should be noted that  this solution obtained by neglecting the thermal conductivity implies that near 
the hydrate dissociation boundary the permeability tends to zero. Therefore, in the vicinity of the boundary 
there exists a region where the condition kg << k~ holds, which, in turn, means that  the thermal conductivity 
near the dissociation region boundary cannot be neglected. Hence, a new solution should be found which 
would take account of thermal conductivity. It can be concluded that  if the thermal conductivity is taken 
into account, the dissociation region boundary will be formed as the interface in the partial dissociation of 
hydrates. 

4. E q u i l i b r i u m  Flow.  Let us suppose that the products of hydrate dissociation (gas and liquid) move 
in a porous medium at an equal velocity (vg = vt = v). Then it follows from Eqs. (2.1) and (2.2) that 

0 .  [m(1 - v)(p~ - p0)] + V-I ra (1  - v)p~ = 0, 
0t 

pOg I = 0 p9S9 + p~Sz. (4.1) 

It was assumed above that  there is no dissolved gas in the liquid phase and that  the gas phase does 
not contain evaporated liquid. Within the framework of these assumptions the density p~ z of the gas-liquid 
mixture can be defined by the equation 

1 g 1 - g  
+ - -  ( 4 . 2 )  po - po po 

In deriving this equation it was also taken into account that,  in the initial state, the porous media was 
completely filled with the hydrate. Using Eq. (1.1) for the gas phase, we obtain the following state equation 
for the gas-liquid mixture: 

1 g R T  1 - g 
- + - - .  (4 .3)  p0 p p0 

The Darcy law can be rewritten for the equilibrium mixture in the form 

m(1 - ,,)v = - ~ V p .  (4.4) 

To determine the permeability coefficient, expression (2.6) can be used. Applying the same assumptions 
that were used for Eq. (3.13) to the equation of heat transfer, we can reduce Eqs. (4.1)-(4.4) to the form 

0 0 , 0 2 [ 20 30p] (4.5) [(Pg' - Ph) T . [Pg'~ o,1 Op 0 kom Pat (1 - v) ~x 
L ~ '~(1-v)g~-~g)flg J o-7--o--; .g,(--i-:m--,)2 

Pa = - @ p  = R T  1 - -  , = - 

Here  the hydrate saturation depends on temperature and pressure in the same way as in (3.13). If pO t << p~ 
(for the dissociation products),  a simpler equation can be obtained instead of (4.5): 
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Op AhT 0 ( kom2p~ 
at T'(p) ax \#gl(1 - m') 2 (1 - -  ,3 cOp'~ - , )  ~ ) .  

Now an analog of Eq. (3.14) can be derived. In this case the coefficient analogous to ze (I) has the form 

:<:>_ ,_0 7 p l  , %1 = ~gllpglo.  

According to (3.15), the relation of expressions describing the movement of the right boundary of the 
hydrate dissociation region for an immovable liquid x~ I) and for an equilibrium flow x~ e) can be written as 
follows: 

X (O f) 

If the dynamic viscosity of the mixture is taken equal to the viscosity of the gas phase (Pli ~ #g) (for 
example, when the dissociation products are a gas-droplet mixture), this relation takes the form 

x s)_ l "~ s 
z~) - ~ =6-- 

PglO P~ g' 
(4.7) 

If, on the contrary, the viscosity of the liquid phase (ttgt =/~z) is taken as the dynamic viscosity of the 
mixture, we obtain 

x~s) "' P~176 " ~  (4.8) 
A~ - ,,~ , 

It follows from (4.6)-(4.8) that for actual parameters of the hydrate and the products of its dissociation 
(in particular, it is assumed that Sg << 1 as a rule) the relation x{J ) << z~ e) is true for the movement of the 
hydrate dissociation region boundary. Hence, when the first scheme takes place with the liquid phase being 
stuck to the porous medium, the boundary moves much slower. 

For the problem of a sudden pressure drop on the boundary of a porous medium, Eq. (4.5) in the 

self-similar variables ~ = z/Vfl'~(pe)t has the form 

dP 
( ~ g, o ~ , , - 1 )  + ,T t , - ,, ) t -~7  ) t o - r (E  ) j -~ -d-( = x e, ( p ) ~ t. - f  - m, ) ~ -~  ) , 

0 0 ( Pgio ~ ~ o  o o o Tr = ( i  - p~,o p~,o/ph, p~ gAhO (pg'~ = Pgto = 7# = kp-~o ) \--~--), O,/O(P))/O(P). 
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Figures 4 and 5 present the pressure and hydrate saturation distribution for various values of the 
pressure difference Ap = P0 - Pe (curves 1-5 correspond to pe equal to 11, 9, 7, 5, and 2 MPa, respectively). 
The characteristic parameters of the gas-hydrate system in this case have the same values as for the first 
scheme. 

It is obvious from Figs. 2 and 4 that the pressure distribution remains qualitatively the same as for 
the "immovable fluid" scheme. However, the boundary of the dissociation region moves much faster. In the 
cases where the viscosity of the gas-liquid mixture is taken as the gas viscosity and as the liquid viscosity, 
the ratio of the boundary coordinates is as follows: 

= 
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